

Astronomy 2115 General Astronomy

Prof. Diana Dragomir

Course Learning Goals

- Successfully practice the ``scientific method" during the course.
- Use physical principles to describe how stars and galaxies form and evolve over time.
- Learn and construct physical models of astronomical objects to explain observations.
- Recount the scientific story of the universe and our place and time within it.

Professor: Diana Dragomir

Office Hours: Tuesdays 2h30-3h30pm/Wednesday 9h00-10h00am; Zoom

Class Web page: https://exoplanets.unm.edu/astr2115.html

Course Text: Universe, 9th, 10th or 11th edition, Freedman, Geller & Kaufmann

Lectures: Recorded lectures will be posted online on UNM Learn

Homework: Reading and homework assignments (roughly weekly) Help is available! TAs: Ismael Mireles, Zoom,(mirelesi@unm.edu); Craig Taylor (ctaylor98@unm.edu)

Class Participation: quizzes via zoom polls

Grading: 10% class participation (+ up to 5% extra credit); 25% homework; 50% based on 2 tests (midterm and final); 15% final project. NOTE: there will be NO makeup tests except by prior arrangement.

Announcements

- The Lab is required for all astrophysics majors
- We do have lab this week

• First Homework is posted and will be due January 28 by the beginning of class; submit via UNM Learn

Class Participation (via single-question quizzes)

- question will be on material just covered in the lecture
- 10% of final grade
- you must participate in the polls for 20 classes to get the full credit
 - you must participate in <u>every</u> quizz given in each one of those 20 classes
- **Bonus:** if you answer correctly in <u>at least one quizz per</u> <u>class</u>, <u>in at least 20 classes</u>, you will get extra credit of 5% towards your final grade.
 - answering correctly in fewer than 20 classes will still earn you extra credit (but less than 5%)

High Solar Activity in Sep. 2017

SDO UV obs on 17Sep6

Optical telescope

Gum Nebula - a supernova remnant

Central object: neutron star

Central object: neutron star

Crab pulsar imaged with LWA

The Sun

Artist's conception

Hubble Space Telescope

Sombrero Galaxy

Me

(with a 1.0m telescope in Chile)

Centaurus A

The Hercules Cluster

Large Scale Structure

How did this structure form?

computer simulations

The Process of Astronomy Research

• What is it that we see?

(observing)

• How does it work?

- (analysis)
- How was it formed, and how will it evolve? (theory & predictions)

What we need in order to explore

- To describe: angular measure coordinate system phases, apparent motion etc.
- To explain: orbital motion atoms and molecules EM radiation

Angles

- We lack depth perception, therefore we use the angular measure to describe:
 - The apparent size of a celestial object
 - The separation between objects
 - The movement of an object across the sky

 To estimate angles, extend your arm and use your hands and fingers like this =>

Example of angular distance: the "pointer stars" in the big dipper

The Moon subtends about one-half a degree

How do we express smaller angles?

One circle has 2π radians = 360°

We subdivide the degree into 60 arcminutes (a.k.a. minutes of arc): $1^{\circ} = 60$ arcmin = 60'

An arcminute is split into 60 arcseconds (a.k.a. seconds of arc): 1' = 60 arcsec = 60"

Powers-of-ten notation

- Astronomy deals with very big and very small numbers we talk about galaxies AND atoms.
- Example: distance to the Sun is about 150,000,000,000 meters. Hard to handle!
- Use "powers-of-ten", or "exponential notation". All the zeros are consolidated into one term consisting of 10 followed by an exponent, written as a superscript.

Note some familiar numbers in powers-of-ten notation (ch. 1.6):

One hundred	$= 100 = 10^{2}$	hecto
One thousand	$= 1000 = 10^{3}$	kilo
One million	$= 1,000,000 = 10^{6}$	mega
One billion	$= 1,000,000,000 = 10^9$	giga

One one-hundredth	= 0.01 = 10 ⁻²	centi
One one-thousandth	$= 0.001 = 10^{-3}$	milli
One one-millionth	= 0.000001= 10-6	micro
One one-billionth	= 0.00000001= 10-9	nano

Examples of powers-of-ten notation

150 = 1.5 x 10² 84,500,000 = 8.45 x 10⁷

> $0.032 = 3.2 \times 10^{-2}$ $0.0000045 = 4.5 \times 10^{-6}$

The exponent (power of ten) is just the number of places past the decimal point.

Example: distance to the Sun is about 150,000,000,000 meters.
How do we write this in exponential notation?

e.g. distance to the sun is 1.5×10^{11} m

We can write the size of just about anything on this chart! (Sizes given in meters):

