Astronomy 2115 General Astronomy
 Prof. Diana Dragomir

Course Learning Goals

- Successfully practice the "scientific method" during the course.
- Use physical principles to describe how stars and galaxies form and evolve over time.
- Learn and construct physical models of astronomical objects to explain observations.
- Recount the scientific story of the universe and our place and time within it.

Astro 2115

Professor: Diana Dragomir
Office Hours: Tuesdays 2h30-3h30pm/Wednesday 9h00-10h00am; Zoom

Class Web page:
Course Text: Universe, $9^{\text {th }}, 10^{\text {th }}$ or $11^{\text {th }}$ edition, Freedman, Geller \& Kaufmann

Lectures: Recorded lectures will be posted online on UNM Learn
Homework: Reading and homework assignments (roughly weekly) Help is available!
TAs: Ismael Mireles, Zoom,((ciavior98@unm.edu)

Class Participation: quizzes via zoom polls
Grading: 10\% class participation (+ up to 5\% extra credit); 25\% homework; 50\% based on 2 tests (midterm and final); 15\% final project. NOTE: there will be NO makeup tests except by prior arrangement.

Announcements

- The Lab is required for all astrophysics majors
- We do have lab this week
- First Homework is posted and will be due January 28 by the beginning of class; submit via UNM Learn

Class Participation (via single-question quizzes)

- question will be on material just covered in the lecture
- 10\% of final grade
- you must participate in the polls for 20 classes to get the full credit
- you must participate in every quizz given in each one of those 20 classes
- Bonus: if you answer correctly in at least one quizz per class, in at least 20 classes, you will get extra credit of 5\% towards your final grade.
- answering correctly in fewer than 20 classes will still earn you extra credit (but less than 5\%)

High Solar Activity in Sep. 2017

SDO UV obs on 17Sep6

Optical telescope

Betelgeuse

Jan 2019
Dec 2019

Optical telescope

Optical telescope

Gum Nebula - a supernova remnant

Central object: neutron star

Central object: neutron star

Crab pulsar imaged with LWA

Artist's conception
The Sun

Hubble Space
Telescope

Sombrero

Galaxy

Me
(with a 1.0m telescope in Chile)

NGC3377

Centaurus A

The Hercules Cluster

Large Scale Structure

How did this structure form?

computer simulations

Cosmology

Dark Energy
Accelerated Expansion

The Process of Astronomy Research

- What is it that we see?
- How does it work?
- How was it formed, and how will it evolve?
(observing)
(analysis)
(theory \& predictions)

What we need in order to explore

- To describe: angular measure
coordinate system
phases, apparent motion etc.
- To explain: orbital motion
atoms and molecules
EM radiation

Angles

- We lack depth perception, therefore we use the angular measure to describe:
- The apparent size of a celestial object
- The separation between objects
- The movement of an object across the sky
- To estimate angles, extend your arm and use your hands and fingers like this =>

Example of angular distance: the "pointer stars" in the big dipper

The Moon subtends about one-half a degree

How do we express smaller angles?

One circle has 2π radians $=360^{\circ}$

We subdivide the degree into 60 arcminutes (a.k.a. minutes of arc):

$$
1^{\circ}=60 \operatorname{arcmin}=60^{\prime}
$$

An arcminute is split into 60 arcseconds (a.k.a. seconds of arc):

$$
1^{\prime}=60 \operatorname{arcsec}=60^{\prime \prime}
$$

Powers-of-ten notation

- Astronomy deals with very big and very small numbers - we talk about galaxies AND atoms.
- Example: distance to the Sun is about $150,000,000,000$ meters. Hard to handle!
- Use "powers-of-ten", or "exponential notation". All the zeros are consolidated into one term consisting of 10 followed by an exponent, written as a superscript.

Note some familiar numbers in powers-of-ten notation (ch. 1.6):

One hundred $=100=102$
One thousand $=1000=10^{3}$
One million $=1,000,000=10^{6}$
One billion $=1,000,000,000=10^{9}$

One one-hundredth $=0.01=10^{-2}$
One one-thousandth $=0.001=10^{-3}$
One one-millionth $=0.000001=10-6 \quad$ micro
One one-billionth $=0.000000001=10^{-9}$ nano

Examples of powers-of-ten notation

$$
\begin{aligned}
150 & =1.5 \times 10^{2} \\
84,500,000 & =8.45 \times 10^{7}
\end{aligned}
$$

$$
\begin{aligned}
0.032 & =3.2 \times 10^{-2} \\
0.0000045 & =4.5 \times 10^{-6}
\end{aligned}
$$

The exponent (power of ten) is just the number of places past the decimal point.

- Example: distance to the Sun is about $150,000,000,000$ meters. How do we write this in exponential notation?

e.g. distance to the sun is 1.5×10^{11} m

We can write the size of just about anything on this chart! (Sizes given in meters):

