Announcements

Homework 2 is due next Thursday (Feb. 4)
Other than my office hours, homework help is also available Fridays 12-1 pm (Ismael Mireles);
https://physics.unm.edu/pandaweb/undergraduate/tutoring.php

Overall structure

ANATOMY OF THE SUN

The Sun's atmosphere

- Photosphere: yellowish color. The part we see, T=5800 K.
- The Sun is a giant sphere or gas - so it doesn't have a well defined surface
- Talking about the surface: we mean the photosphere
- The point where atmosphere becomes completely opaque is the photosphere (defines diameter of the Sun)

Limb darkening

- Outer portions of photosphere being cooler

- Photons travel about the same path length

Dimmer light comes from higher, relatively cool layer within the photosphere

Bright light comes from low-lying, hot layer within the photosphere

Granulation

- Photosphere is lowest of 3 atmospheric layers
- Granulation due to convection

This picture shows blobs $\sim 1000 \mathrm{~km}$ across

Chromosphere

- Middle layer, characterized by H α emission: red color.
- The gas is very rarefied (10-4 density of photosphere).
- Also featured are gas plumes jutting upward.

Spectrum of chromosphere is dominated by emission lines what does this say about temperature compared to photosphere?

H alpha image showing chromospheric activity. Photo taken through filter which lets through only light of wavelength of H -alpha (656 nm).

Corona

Image credit: Luc Viatour/Diliff

Ejects mass into space -> solar wind
Shapes of streamers vary on timescales as short as days!

Next total solar eclipse: April 8, 2024

Thermal Profile of the Sun

What are stars?

Are they all alike? Is the Sun typical?

How can we describe/classify stars?

- Temperature
- Luminosity (total energy output)
- Mass (orbital motion)
- Physical sizes
- True motion in space

Two dimensions are easy - use photograph for angular position.
Distance not so easy, the only direct means is by parallax.

Parallax is the apparent angular shift of an object due to a change in an observer's point of view.

The parallax formula for distance

- $d=1 / p \quad$ where p is the parallax angle and d is the distance in $p c$.
- Distance units: $1 \mathrm{pc}=3.26 \mathrm{ly}=3.09 \times 10^{16} \mathrm{~m}=206,265 \mathrm{AU}$
- It took us until 1838 to measure stellar parallaxes since the stars are so far away => small parallax angles

Limitations

Gaia satellite

- Until recently we only knew accurate ($0.01^{\prime \prime}$) parallaxes for a few hundred stars (=> d~100pc)
- In the 1990's the ESA satellite Hipparchos measured over 100,000 parallaxes with an accuracy of 0.001 "
- Gaia has measured over a billion stars to 2 kpc

Proper motion

- Caused by physical movement of a star with respect to our Solar system
- This is in contrast to parallax which is an apparent motion of the star due to the motion of the Earth
- Proper motion is the angle a star moves per year (angular motion on the sky), and it is a linear drift
- The superposition of this linear drift and the elliptical motion from the parallax effect leads to a 'wavy' path on the sky

This star moved 4' over this time - a huge proper motion of 10 ". $9 / \mathrm{yr}$.

Tangential velocity

$v_{t}=4.74 \mu d$, where μ is the proper motion ["//yr] and d is the distance [pc]; this choice of constants gives v_{t} in the units of km / s.

Dependent on distance

Radial velocity

Given by Doppler shift:
Independent on distance
$\mathrm{v}_{\mathrm{r}}=\left[\left(\lambda_{\text {observed }}-\lambda_{\text {emitted }}\right) / \lambda_{\text {emitted }}\right] \mathrm{c}$

Space Velocity

Speed and direction of star. From Pythagorean theorem

$$
V=\sqrt{V_{i}^{2}+V_{i}^{2}}=\sqrt{(4.74 \mu d)^{2}+V_{i}^{2}}
$$

Typical stellar space velocities are 20-100 km/s.

Three quantities need to be measured - distance is the most difficult one.

Why care about stellar motions?

- A tool to study structure of our Galaxy
- Motion of the Sun (~20km/s)
- Rotation of the Galactic Plane (local)
- Odd phenomena/stars that might indicate special events
- Past merger events

How bright is a star?

- Luminosity (L, intrinsic property): the total energy output, a physical property of the star. Doesn't depend on distance.
- Apparent brightness $(F$, or $b)$: measures how bright a star appears to be on a distance. Does depend on distance!
- The brightness, or intensity, of light diminishes as the inverse square of the distance.

$$
F=L / 4 \pi d^{2}
$$

Same amount of radiation from a star must illuminate a bigger area as distance from star increases. The area increases as the square of the distance.

Apparent magnitudes

- Measurement of brightness of stars as they seem from Earth.
- Smaller magnitudes mean brighter stars and defined such that 5 magnitude differences implies a factor of 100 in brightness
- Magnitude difference related to brightness ratio:

- Also note: if

- This is a logarithmic scale - no zero point is defined. Done by defining certain stars to have zero magnitude.

Apparent magnitude difference $\left(m_{2}-m_{1}\right)$

1
2
3
4
5
10
15
20

Ratio of apparent brightness $\left(b_{1} / b_{2}\right)$
2.512
$(2.512)^{2}=6.31$
$(2.512)^{3}=15.85$
$(2.512)^{4}=39.82$
$(2.512)^{5}=100$
$(2.512)^{10}=10^{4}$
$(2.512)^{15}=10^{6}$
$(2.512)^{20}=10^{8}$

A simple equation relates the difference between two stars' apparent magnitudes to the ratio of their brightnesses:

Magnitude difference related to brightness ratio

$$
m_{2}-m_{1}=2.5 \log \left(\frac{b_{1}}{b_{2}}\right)
$$

A factor of 2.512 difference in brightness per magnitude. Box 17-3.

- The apparent magnitude scale - some examples:

	\qquad Full moon (-12.6) \qquad Venus (at brightest) (-4.4) \qquad Sirius (brightest star) (-1.4) \qquad Naked eye limit (+6.0) \qquad Binocular limit (+10.0) \qquad Pluto (+15.1) \qquad Large telescope (visual limit) (+21.0) \qquad Hubble Space Telescope and large Earth- \qquad based telescopes (photographic limit) (+30.0)

Absolute magnitude

Caution:
Apparent magnitude is NOT power output! A star may have bright (small) apparent magnitude because it is close to us, or it might have a bright (small) magnitude because it produces a huge amount of light.

As scientists, we want a brightness scale that takes distance into account and measures the total energy output of the star.

Absolute magnitude:
Definition: the apparent magnitude a star would have if it were precisely 10 pc away from us

$m-M=5 \log (d)-5$

m is apparent magnitude (measured)
d is distance (calculated from parallax)
M is absolute magnitude

Derivation

This comes from the definition of magnitude (a magnitude difference of 5 equals a factor 100 in brightness):

$$
m_{2}-m_{1}=2.5 \log \left(\frac{F_{2}}{F_{1}}\right) \rightarrow \frac{F_{2}}{F_{1}}=100^{\left(m_{1}-m_{2}\right) / 5}
$$

Now assume star 1 is at a distance d with an apparent magnitude $m_{1}=m$, and star 2 is at the distance of 10 pc with apparent magnitude $m_{2}=M$:

$$
\frac{F_{10 p c}}{F_{d}}=100^{(m-M) / 5}
$$

Next we use the relation $F=L / 4 \pi d^{2}$ or, equivalently $b=L / 4 \pi d^{2}$

$$
\frac{F_{10 p c}}{F_{d}}=\frac{L}{4 \pi(10 \mathrm{pc})^{2}} \frac{4 \pi d^{2}}{L}=\frac{d^{2}}{100 \mathrm{pc}^{2}}
$$

Thus,

$$
\frac{d^{2}}{100 \mathrm{pc}^{2}}=100^{(m-M) / 5} \rightarrow d^{2}=100 \times 100^{(m-M) / 5}=100^{5 / 5} \times 100^{(m-M) / 5}=100^{(m-M+5) / 5}
$$

Taking the log of this then yields

$$
\begin{aligned}
& 2 \log (d)=\frac{m-M+5}{5} \log (100)=\frac{m-M+5}{5} 2 \\
& m-M+5=5 \log (d) \rightarrow m-M=5 \log (d)-5
\end{aligned}
$$

where d must be in units of parsecs.

The absolute magnitude is a more useful measure of a star's power output (Luminosity).

Examples:

M	Star
-5	Betelgeuse
-1.5	Sirius
+5	Sun
+10	Sirius B

- Since $L=4 \pi d^{2} b$, we can compare any star's luminosity to the Sun's by a ratio:

- Knowing relative distance and brightness, we know the star's relative luminosity. Finally, you can show that

$$
M_{Q_{n}}-M_{*}=2.5 \log \frac{L_{*}}{L_{S n}}
$$

Luminosity function

- Describes the relative numbers of stars with different luminosities
- There are more faint stars than bright
- Note the enormous range in luminosity

Are you seeing neighbor stars, or highly luminous (but distant) stars?

Recall that 1 pc is 3.26 ly . E.g. Betelgeuse is about 160 pc away.

b

Colors of stars

- From Wien's law $\lambda_{\max }=0.0029 / T$ we expect hotter objects to be bluer.

To measure colors

- A set of filters can be used to determine the colors of stars

The UBV system

- In fact, we don't need distances - apparent magnitudes in each filter works
- If a B magnitude is small, does that mean that the star is very blue?
- Not necessarily, the V and R magnitudes might be even smaller. Then the star is brighter in redder filters.

To quantify color: color index

- Need brightness measurements through at least 2 filters to determine color
- Example: B-V color index

$$
C I=B-V=2.5 \log \left(\frac{b_{V}}{b_{\mathrm{B}}}\right)+\text { const }
$$

- The constant is chosen so that a star at $10^{4} \mathrm{~K}$ has a $\mathrm{B}-\mathrm{V}=0.0$

table $\mathbf{1 9} \mathbf{- 1}$	Colors of Selected Stars			
Star	Surface temperature (K)	$b_{\mathrm{V}} / b_{\mathrm{B}}$	$b_{\mathrm{B}} / b_{\mathrm{U}}$	Apparent color
Bellatrix (γ Orionis)	21,500	0.81	0.45	Blue
Regulus (α Leonis)	12,000	0.90	0.72	Blue-white
Sirius $(\alpha$ Canis Majoris)	9400	1.00	0.96	Blue-white
Megrez (δ Ursae Majoris)	8630	1.07	1.07	White
Altair $(\alpha$ Aquilae)	7800	1.23	1.08	Yellow-white
Sun	5800	1.87	1.17	Yellow-white
Aldebaran (α Tauri)	4000	4.12	5.76	Orange
Betelgeuse (α Orionis)	3500	5.55	6.66	Red

Temperature, color and color ratio

- The b_{V} / b_{B} color ratio is small for hot stars, and large for cool stars.

Binary stars

Tatooine

Binary stars

1. Visual binaries - can see both stars. Binaries (any type) always orbit around the mutual center of mass.

- Can plot orbit of either star around the other, treated as stationary.

$$
a_{1} M_{1}=a_{2} M_{2}
$$

where a = semimajor axis, $M=$ mass
Recall semimajor axis = half of the long axis of ellipse

Visual binaries allow direct calculation of stellar masses. Use Kepler's third law:

M_{1}, M_{2} are masses of the two stars (in M_{\odot})
a = semimajor axis of one star's orbit around the other (in units of Earth-Sun distance, AU)
$\mathrm{P}=$ orbital period (in years)

- Gives the sum of the masses, not individual masses. Need another equation: Use fact that the more massive star will be closer to center of mass:

- Two equations in two unknowns => can solve for individual masses.

2. Spectroscopic binaries - even if you can't see both stars, might infer binary from spectrum

Spectral lines of stars split by Doppler effect

Merged spectral lines

3. Eclipsing binaries - stars periodically eclipse each other.
4. Eclipsing binaries - stars periodically eclipse each other. Can tell it's binary from "light curve" - plot of brightness vs. time.

5. Astrometric binaries - one star can be seen, the other can't. The unseen companion makes the visible star "wiggle" on the sky.

