News and Reminders

Homework 3 is due now

Mid-semester proposal due dates:

- Proposal due: Monday, October 28
- Proposal review: Wednesday, Oct. 30

Constituent Relations

At the high pressures and temperatures in planet interiors, hard to predict the state of the materials.

Phase diagram of H₂

Atmospheric composition of the giant planets

80 - 90% Hydrogen (by volume)

10 - 15% Helium (by volume)

	Protosolar	Jupiter	Saturn	Uranus	Neptune
Н	83.5%	89.8%	96.3%	83%	82%
Не	16.2%	10.2%	3.2%	15%	15%

But would expect 84% H and 16% He, like the protosolar nebula (unless some of their cores mixed into the atmospheres, or ingested planetesimals after forming).

Atmospheric composition of the giant planets

He/H = 13.7 % in Jupiter

VS

He/H = 16 % in Saturn

Gravity Fieldi The gravitational potential of a body is: for an Jn Pn (coso)/R axisymmetric Dg (r, O, Ø) body leg a planet Pn (050): Legendre pobynomials/solve 72 Jg = 0 describe the non-Jn: gravitational moments determined by the body's mass distribution of mass in a solid planet): body about the equator For rotational e.g. oblate generally a good approximation for the Solar System gas glants odd $n: J_n = 0$ even $n: J_n \neq 0$ However, at least for Jupiter, Jn for oddn are not 0. Why? Asymmetric winds and zonal Plows harmonic, $J_2 = \frac{1}{3}K_T qr$, is related to the different between axial and equatorial 2nd The ratio of centifugal gr = w2rot R. moments of inertia Ky: tidal Love number to grav. for GM (quantifies polar at body 5 Plattening surface oblateness: $E = R_e - R_p \sim \frac{3}{2} J_2$ R.

Gravity Moments

Models predict a wide range of core masses (0 - 30 M_{Earth})

But is this still the picture today?

Parameter	Value			
G^a (global parameter)	$6.672598 \times 10^{-11} \pm 2 \times 10^{-17} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$			
$G \times M_J{}^b$	$(126686533 \pm 2) \times 10^9 \mathrm{m}^3 \mathrm{s}^{-2}$			
M_J	$1.89861 imes 10^{27} m kg$			
$R_{eq}{}^c$	$71492\pm4~\mathrm{km}$			
R_{polar}^{c}	$66854\pm10~\mathrm{km}$			
$\omega^{ar{d}}$	$1.7585324 \times 10^{-4} \pm 6 \times 10^{-10} \text{ s}^{-1}$			
$ar{ ho}$	1326.5 kg m^{-3}			
$m = 3\omega^2/4\pi G\bar{ ho}$	0.083408			
$q = \omega^2 R_{eq}^3 / GM_J$	0.0891954			
$J_2 \times 10^{6e^{-1}}$	14696.572 ± 0.014			
$-J_4 \times 10^{6e}$	586.609 ± 0.004			
$J_6 \times 10^{6e}$	34.198 ± 0.009			
$-J_8 \times 10^{6e}$	2.426 ± 0.025			
$J_{10} \times 10^{6e}$	0.172 ± 0.069			

and I/(MR^2) = 0.276

pre-Juno predictions:

Magnetic Field of Jupiter

Interior of Saturn

Interior of Saturn

Magnetic Field of Saturn

Interior and Magnetic Field of Uranus

Interior and Magnetic Field of Neptune

Gravitational Moments

				1		Δ2	I/MR^2	C ₂₂	Refs
Body	J_2	J_3	J_4	J_{6}	<i>Y</i> r	~~2	,	$(\times 10^{-6})$	
	$(\times 10^{-6})$	$(\times 10^{-6})$	$(\times 10^{-6})$	(×10°)		CALCULATION OF			
Mercury	60 ± 20				1.0×10^{-6}	60	0.33		1
Venus	4.46 ± 0.03	-1.93 ± 0.02	-2.38 ± 0.02		6.1×10^{-8}	73	0.33		1
Earth	1 082.627	-2.532 ± 0.002	-1.620 ± 0.003	-0.21	3.45×10^{-3}	0.314	0.331		1
Moon	203.43 ± 0.09				7.6×10^{-6}	26.8	0.393	22.395	1,2
Mars	1960.5 ± 0.2	31.5 ± 0.5	-15.5 ± 0.7		4.57×10^{-3}	0.429	0.365		1
Jupiter	14696.4 ± 0.2		-587 ± 2	34 ± 5	0.089	0.165	0.254		1
Saturn	16290.7 ± 0.3		-936 ± 3	86 ± 9	0.151	0.108	0.210		4
Uranus	3343.5 ± 0.1		-28.9 ± 0.2		0.029	0.114	0.23		1
Neptune	3410 ± 9		-35 ± 10		0.026	0.136	0.23		1
Io	1860 ± 3				1.7×10^{-3}	1.08	0.378	558.8	3
Europa	436 ± 8				5.02×10^{-4}	4 0.87	0.346	131.5	3
Ganymede	128 ± 3				1.91×10^{-4}	4 0.67	0.312	38.3	3
Callisto	33 ± 1				3.67×10^{-3}	5 0.90	0.355	10.2	3

Size Distribution

Small Planets Are Common

Fulton & Petigura (2018)