News and Reminders

Homework 5 posted - due Monday, Nov. 18

Proposal reviews - due now

End of semester proposal due dates:

- Abstract due: Monday, Nov. 11
- Proposal due: Monday, Dec. 2

A Solar System Planet Formation Model Must Explain Its Properties

- Orbits + angular momentum distribution: circular vs. eccentric; is SS packed?
- Sizes and densities of planets: density ~decreases with distance
- Shapes and densities of small bodies: porous! esp. R < 100 km
- Asteroid and Kuiper belts + Comets
- Moons
- Rings: interior to largest moons
- Age: chondritic meteorites -> 4.568 Gyr -> formed very early; Earth+Moon rocks are younger.
- Meteorites: cool grains + heated inclusions -> mixing of solids in the disk; similar ages -> fast accretion period
- Isotopic composition: isotopic ratios mostly uniform, some variation from radioactive decay/incomplete mixing; also: where did the short-lived initial isotopes come from?
- Differentiation: needs melting -> implies high T at some point in past
- Composition of atmospheres: H abundance lower than Sun, metal abundances higher than Sun.
- Surface structure: some surfaces are too cratered to explain with today's impact rates

n of young stellar objects

e	Physical properties	Observational characteristics
	$M_{\rm env} > M_{\rm star} > M_{\rm disk}$	No optical or near-IR emission
	$M_{ m star} > M_{ m env} \sim M_{ m disk}$	Generally optically obscured
0.3		Intermediate between Class I and II
-0.3	$M_{ m disk}/M_{ m star} \sim 1\%, M_{ m env} \sim 0$	Accreting disk; strong H α and UV
	$M_{ m disk}/M_{ m star} \ll 1\%, \; M_{ m env} \sim 0$	Passive isk; yoe ery Seak accretion

- IR-based classification:
 Lada & Wilking (1984)
 Class L-IL-III
 Class L-IL-III
 10⁵ 10⁶ years
- Spectral slope between 2 and 25 μm

$$\alpha_{\rm IR} = \frac{d \log \nu F_{\nu}}{d \log \nu} = \frac{d \log \lambda F_{\lambda}}{d \log Q^6} - 10^7 \text{ years}$$

• Flat spectrum; Class 0

CTTS / WTTS
 EW(Hα) ~ 10 Å

Disk Structure

Disk Structure

- IR = disk surface closer to the star (0.1 10s of AU)
- sub-mm = larger distances and deeper into the disk

Disks are optically thick in infrared and optically thin in millimeter

TW Hydrae (ALMA image)

Andrews et al. (2016)

Images of Disks (mm)

Images of HD 163296 disk (ALMA - gas component)

Disk Size Distribution

Condensation Sequence

Central Regi Only metals an condense into

~98% of the ne which do not o

Protoplanetary **Sinbwlines**

Öberg, Murray-Clay and Bergin 2011

Minimum-Mass Solar Nebula (MMSN)

How much mass was needed to form the planets?

- 1. Take the mass in each planet
- 2. Increase H/He to solar composition
- 3. Spread the mass into an annulus around each orbit

Jupiter's orbit

Spread Jupiter's augmented mass (~5x real mass) across this annulus to yield a column density.

Minimum-Mass Solar Nebula (MMSN)

Disk Masses

