News and Reminders

Homework 5 - due Monday, Nov. 18

Wednesday - guest lecture by Dominic Oddo

End of semester proposal due dates:

- Abstract due: today
- Proposal due: Monday, Dec. 2

Minimum-Mass Solar Nebula (MMSN)

accretion rate vs. stellar mass. All the symbols are as in the left panel. The dashed–dotted black line shows *M M* log log acc µ . **Disk Masses**

Disk Evolution

Disk Lifetimes

 0.1

Planetesimal Formation

It all starts with dust…

Dust grains (<1 micron) are present in atmospheres of giant stars

-> but their formation is still debated

Planetesimal Formation

At this early stage, motion of grains is coupled to gas

Fractals form, held together by van der Waals force (short-range force from interaction of dipole moments at surface of grains that are in contact)

At ~1 mm: bouncing/fragmentation barrier!

> -> but need sticking for growth

> > -> ongoing research -> magnetic fields could shift bouncing barrier to larger sizes -> magnetic aggregation **Figure 10.** Formation of an elongated cluster of aggregates after applying a magnetic field of 7 mT

Krus & Wurm (2018)

Magnetic field on

Magnetic field off

The Drift Barrier

As particles grow in mass, they decouple from the gas and begin to settle toward the mid-plane of disk

Consider: gas is partially supported against stellar gravity by pressure in radial direction, so gas moves *slower* than Keplerian rate.

Smaller grains are coupled to the gas, but: Larger particles (mm - cm) move at speeds closer to Keplerian and thus feel a headwind from the slower gas.

> -> some angular momentum is removed from particle -> they drift inward

Very large bodies (km-sized) have low surface area to mass ratio, so feel less headwind -> no drift

Effective gravit f e/ f gas: $9.4f = -GM_0$ have you seen d f_g dr V^2 acceleration produced b centrifugal acceptoration $q/50:$ $b4t$ $9eff =$ YN_2^2 for a circular orbi Langular velocity $+\frac{1}{\rho_g}\frac{dP}{dr}$ G $M_q =$ $\overline{r^2}$ $f g$ $d \rho$ $6H$ $GMP₁$ dr dP dr $2G$ $~\sim$ 5 \times 10⁻³ so disk votates 0.5% slower than Keplenian speed

Planetesimal Formation

Gravitational instability planetesimal formation:

- if dust settles in very thin disk that is also nearly perfectly free of turbulence, then dust disk may fragment into clumps that collapse under own gravity;
- problem: turbulence prohibits these circumstances from being reached.

Streaming instability:

- bodies drift in (from loss of angular momentum), encounter another one and accumulate into a cluster
	- *local* gas is sped up a little by cluster and rotates closer to Keplerian speed
	- headwind on cluster is reduced, and drifts more slowly toward the star
- slower drifting clusters are overtaken and joined by isolated particles from further away, increasing the local density and further reducing radial drift
- - > exponential growth of the clusters

From Planetesimals to Planetary Embryos

Lots of planetesimals floating around.

These **O(1 km)**-sized bodies feel much less headwind from the gas.

Collisions abound:

- can be mostly inelastic -> accretion
- elastic -> fragmentation
- elastic -> rebound
	- "semi"-Keplerian orbits are changed to random motions

From planetesimals to planetary embryas: bi impact porameter distance of closest approach R_{o} \sqrt{m} V_2 Collisions + accretion relative velocity of each body at infinity $\frac{1}{2}$ 15 closest approach, they have velout Vmax. Energy conservation: $mv^2 \times z$ $+\frac{1}{2}m$ MV^2 M $\sqrt{}$ $\overline{2}$ \overline{z} $mv_{max}^2 \times 2 - Gmm$ $\overline{2}$ R_c $= m v_{max}^2 - G m$ $R_{\rm\scriptscriptstyle C}$ Conservation of angular momentum! since no $(r+b)$ $+$ μv $-M\overline{V}r$ 2 M) \overline{z} radial Component of $\frac{\sqrt{b}}{2}$ = V_{max} Re \Rightarrow V_{max} = \vee velocity a point of \overline{z} closest approach)

= sum of radi' of the two bodies $R_c < R_s \implies collision$ $>$ Ks => $f(yby)$ $1mv^2 + Gm^2$ $4R$ $b^2 = 4 V_{max}^2 R_c^2$ m R_c^2 + 4 R_c Gm So the largest value of b that gives $R_s^2 + \frac{4R_s Gm}{2}$ han this, it means $b =$ $\overline{V^2}$ function of wrte Vese can 45 $1+\frac{V_{ex}}{V^2}$ Can define a gravitational focusing factor; N_{esc} and a cross-section for cellisions $\frac{1}{9} = 1 +$ Vesc $=$ $\pi k^2 E$ $T = \# R_{s}^{2}$ When vect vesc, growth is
much faster due to gravitational focusing

Gravitational Focusing

Without gravitational focusing:

 $Γ = π R_p²$

With gravitational focusing:

 $\Gamma = \pi b^2 = \pi (R_c^2 + 4R_cGm/v^2)$

Growth rate; f_{sw} $\frac{1}{\sqrt{2\pi}}$ he density Where s_{Warm} and v_{rms} is
The dispersion velocit