News and Reminders

Homework 6 (last one!) - due Monday (Dec. 2)

No more reading quizzes!

JC 8 - Monday (Dec. 2)

End of semester proposal due dates:

- Proposal due: Monday, Dec. 2
- Proposal review: Wednesday, Dec. 4
- Proposal review write-ups: Monday, Dec. 9

Bonus topics: email me your suggestions by end of today

Please complete the course evaluations

Planet Formation Summary

Considerations from Observations of Exoplanets

Considerations from Observations of Exoplanets

What might happen to a system initially like the SS, if a gas giant migrates in to become a hot Jupiter?

Considerations from Observations of Exoplanets

Gas Disk Migration

Planets exchange angular momentum with the disk, giving rise to torques on the planets.

Torque is generally expected to be negative -> planets lose angular momentum to the disk and drift towards the star.

- The gas loses angular momentum
- The planet gains angular momentum
- Planet moves outwards
- Gas moves inwards (gas is repelled from the planet)

For gas exterior to the planet orbit

- Decrease in Δv_{\parallel} means increase in *j*
- The gas gains angular momentum
- The planet loses angular momentum
- Planet moves inwards
- Gas moves outwards (gas is repelled from the planet)

Gas disk migration: mpalse approximation: m moves with AV > AV VII AV: velocity of gas relative to planet M MAN ATT $\frac{3}{2}$ GmM 17 ∞ $F_{\perp} dt = 26M$ AVL = but AV, does not change the angular momentum, only VII does pair m -00 conservation of energy; $\Delta V^2 = \Delta V_1^2 + \left(\Delta V - \Delta V_{ll} \right)$ for small deflection angles: 26Mp $\Delta V_{\eta} \approx$ 2AV 6 AV

Angular momentum change; $AL = a \times AV = a AV_{\parallel} = \frac{2 B^2 M_{\mu}^2 a}{b^2 AV^3}$ Torque: ∞ $86^2M_p^2a \ge db$ $9J_2^2$ b^4 for interaction with gas outside the planets Integral diverges, so let's integrate from burn to ~ instead, $\implies C = -8 G^2 M_2^2 q \overline{Z}$ $\xrightarrow{27} S_p^2 b_{min}$ =>more massive planets migrate faster YX AN dL) dt Tmig = ~ 1 Myr for 1 Mo or 0,2 Myr Tor 1Mg × Me × M

Gas Disk Migration

 $m(\Omega - \Omega_p) = \begin{cases} \kappa & \text{Inner Lindblad Resonance} & \Omega = \Omega_p + \kappa/m \\ 0 & \text{Corotation} & \Omega = \Omega_p \\ -\kappa & \text{Outer Lindblad Resonance} & \Omega = \Omega_p - \kappa/m \end{cases}$

Location of Lindblad resonances

$$r_{L\pm} = r_p \left(1 \pm \frac{1}{m}\right)^{2/3}$$

A gap-opening body in a disk

Type I Migration

A lower-mass planet doesn't perturb the disk very much -> Type I migration

Lindblad torques act on the planet Numerical simulations find that the net torque is always negative -> inward migration

Fast: a 10 MEarth planet at 5 AU drifts into the star in 10 000 years!

- -> too fast to allow giant planet formation
 - -> Neptune would have been ingested by the Sun.

The material3.3leading the planet4pulls it ahead and3.2makes it gain3.4angular momentum.3.4The trailing material3.4brakes the planet3.4making it lose3.4angular momentum.3.4

Type II Migration

High-mass (~Saturn-mass +) planets can clear a gap in the disk.

This ends Type I migration and allows Type II to take over.

Two conditions necessary for gap formation:

- the Hill sphere of the planet needs to be comparable to the thickness of the gas disk
- 2) tidal torques must be able to remove gas from the gap region faster than viscosity can fill the gap back in

Type II Migration

Planet Migration

"Grand Tack" Model

"Nice" Model

"Nice" Model

